Measures on Locally Compact Topological Groups
نویسندگان
چکیده
منابع مشابه
On component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملOn the Structure of Certain Locally Compact Topological Groups
A locally compact topological group G is called an (H) group if G has a maximal compact normal subgroup with Lie factor. In this note, we study the problem when a locally compact group is an (H) group. Let G be a locally compact Hausdorff topological group. Let G0 be the identity component of G. If G/G0 is compact, then we say that G is almost connected. The structure of almost connected locall...
متن کاملPseudoframe multiresolution structure on abelian locally compact groups
Let $G$ be a locally compact abelian group. The concept of a generalized multiresolution structure (GMS) in $L^2(G)$ is discussed which is a generalization of GMS in $L^2(mathbb{R})$. Basically a GMS in $L^2(G)$ consists of an increasing sequence of closed subspaces of $L^2(G)$ and a pseudoframe of translation type at each level. Also, the construction of affine frames for $L^2(G)$ bas...
متن کاملWeakly infinitely divisible measures on some locally compact Abelian groups
Let G be a locally compact Abelian topological group having a countable basis of its topology. We also suppose that G has the T0–property, that is, ⋂ U∈Ne U = {e}, where e denotes the identity element of G and Ne is the collection of all Borel neighbourhoods of e. (By a Borel neighbourhood U of e we mean a Borel subset of G for which there exists an open subset Ũ of G such that e ∈ Ũ ⊂ U.) Let ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1947
ISSN: 0002-9947
DOI: 10.2307/1990291